诱导产生iPS的新技术

2014/9/29 10:02:19 本站原创 佚名 【字体:

 

耶路撒冷大学的研究人员发明了一种新的细胞因子配方((Sall4, Nanog, Esrrb, Lin28, SNEL),可以非常有效地将80%的分化的细胞诱导为iPS

 

 

Researchers at the Hebrew University of Jerusalem have developed a new cocktail that is highly effective at coaxing adult cells to become quality pluripotent stem cells.
 
To make iPSCs, scientists expose adult cells to a cocktail of genes that are active in embryonic stem cells. iPSCs can then be coaxed to differentiate into other cell types such as nerve or muscle. However, the standard combination of factors used to reprogram cells leads to a high percentage of serious genomic aberrations in the resulting cells. (The reprogramming factors are Oct4, Sox2, Klf4, and Myc -- known collectively as OSKM).
 
Now researchers at the Hebrew University of Jerusalem have developed a new cocktail of reprogramming factors that produce high-quality iPSCs. Dr. Yosef Buganim, at the Institute for Medical Research Israel-Canada in the Hebrew University's Faculty of Medicine, worked with scientists at the lab of Whitehead Institute founding member Rudolf Jaenisch, a professor of biology at MIT.
 
Working with mouse cells, Dr. Buganim and research scientist Styliani Markoulaki used bioinformatic analysis to design a new cocktail of reprogramming factors (Sall4, Nanog, Esrrb, and Lin28, known collectively as SNEL).
 
The new SNEL cocktail created fewer colonies of iPSCs, but approximately 80% of those produced passed the most stringent pluripotency test. This is highly preferable to the traditional OSKM cocktail, which produces a large number of colonies but the majority of which fail the pluripotency test.
 
Dr. Buganim hypothesizes that SNEL may reprogram cells better than OSKM because it does not rely on the master regulators Oct4 and Sox2, which might activate part of the adult cell genome. According to Buganim, the research demonstrates the effectiveness of bioinformatics tools in producing high quality iPSCs.
 
This study takes the regenerative medicine field one step closer to the clinic, where it may be able to help patients in need of cellular transplantation therapy. The researchers will now seek to define the optimal combinations for reprogramming human iPSCs, which are harder to reprogram than mouse cells and which could not be reprogrammed using the SNEL cocktail.
 
Reference:
Yosef Buganim, Styliani Markoulaki, Niek van Wietmarschen, Heather Hoke, Tao Wu, Kibibi Ganz, Batool Akhtar-Zaidi, Yupeng He, Brian J. Abraham, David Porubsky, Elisabeth Kulenkampff, Dina A. Faddah, Linyu Shi, Qing Gao, Sovan Sarkar, Malkiel Cohen, Johanna Goldmann, Joseph R. Nery, Matthew D. Schultz, Joseph R. Ecker, Andrew Xiao, Richard A. Young, Peter M. Lansdorp, Rudolf Jaenisch. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014; 15 (3): 295 DOI: 10.1016/j.stem.2014.07.003

相关阅读: